Organization of the qa gene cluster in Neurospora crassa: direction of transcription of the qa-3 gene.
نویسندگان
چکیده
In Neurospora crassa, the enzyme quinate (shikimate) dehydrogenase catalyzes the first reaction in the inducible quinic acid catabolic pathway and is encoded in the qa-3 gene of the qa cluster. In this cluster, the order of genes has been established as qa-1 qa-3 qa-4 qa-2. Amino-terminal sequences have been determined for purified quinate dehydrogenase from wild type and from UV-induced revertants in two different qa-3 mutants. These two mutants (M16 and M45) map at opposite ends of the qa-3 locus. In addition, mapping data (Caseet al. 1978) indicate that the end of the qa-3 gene specified by M45 is closer to the adjacent qa-1 gene than is the end specified by the M16 mutant site. In one of the revertants (R45 from qa-3 mutant M45), the aminoterminal sequence for the first ten amino acids is identical to that of wild type. The other revertant (R1 from qa-3 mutant M16) differs from wild type at the amino-terminal end by a single altered residue at position three in the sequence. The observed change involves the substitution of an isoleucine in M16-R1 for a proline in wild type. This substitution requires a two-nucleotide change in the corresponding wild-type codon.--The combined genetic and biochemical data indicate that the qa-3 mutants M16 and M45 carry amino acid substitutions near the amino-terminal and carboxyl-terminal ends of the quinate dehydrogenase enzyme, respectively. On this basis we conclude that transcription of the qa-3 gene proceeds from the end specified by the M16 mutant site in the direction of the qa-1 gene. It appears probable that transcription is initiated from a promoter site within the qa cluster, possibly immediately adjacent to the qa-3 gene.
منابع مشابه
Genetical and biochemical characterization of QA-3 mutants and revertants in the QA gene cluster of Neurospora crassa.
The qa-3 gene, one of the four genes in the qa gene cluster, encodes quinate (shikimate) dehydrogenase (quinate: NAD oxidoreductase, ER 1.1.1.24), the first enzyme in the inducible quinic acid catabolic pathway in Neurospora crassa. Genetic analyses have localized 26 qa-3 mutants at 11 sites on the aq-3 genetic map on the basis of prototroph frequencies. Certain mutants, e.g., 336-3-10 and 336-...
متن کاملSystems Biology of the qa Gene Cluster in Neurospora crassa
An ensemble of genetic networks that describe how the model fungal system, Neurospora crassa, utilizes quinic acid (QA) as a sole carbon source has been identified previously. A genetic network for QA metabolism involves the genes, qa-1F and qa-1S, that encode a transcriptional activator and repressor, respectively and structural genes, qa-2, qa-3, qa-4, qa-x, and qa-y. By a series of 4 separat...
متن کاملDNase I hypersensitive sites within the inducible qa gene cluster of Neurospora crassa.
DNase I hypersensitive regions were mapped within the 17.3-kilobase qa (quinic acid) gene cluster of Neurospora crassa. The 5'-flanking regions of the five qa structural genes and the two qa regulatory genes each contain DNase I hypersensitive sites under noninducing conditions and generally exhibit increases in DNase I cleavage upon induction of transcription with quinic acid. The two large in...
متن کاملUse of gene replacement transformation to elucidate gene function in the qa gene cluster of Neurospora crassa.
Gene replacement by transformation, employing selective genetic recombination techniques, has been used to delete or disrupt the qa-x, qa-y and qa-1S genes of the qa gene cluster of Neurospora crassa. The growth characteristics of the strain carrying the deletion of the qa-y gene support earlier evidence that this gene encodes a quinic acid permease. The strain containing the deletion of the qa...
متن کاملGenome-wide expression analysis of genetic networks in Neurospora crassa
The products of five structural genes and two regulatory genes of the qa gene cluster of Neurospora crassa control the metabolism of quinic acid (QA) as a carbon source. A detailed genetic network model of this metabolic process has been reported. This investigation is designed to expand the current model of the QA reaction network. The ensemble method of network identification was used to mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 92 1 شماره
صفحات -
تاریخ انتشار 1979